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Superballistic spreading of wave packets
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We demonstrate for various systems that the variance of a wave packetM (t)}tn, can show asuperballistic
increase with 2,n<3, for parametrically large time intervals. A model is constructed that explains this
phenomenon and its predictions are verified numerically for various disordered and quasiperiodic systems.
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The time evolution of wave packets in one-dimensio
~1D! and quasi-1D lattices is described by the tim
dependent Schro¨dinger equation

i
dcn~ t !

dt
5 (

m5n2b

n1b

Hnmcm , ~1!

wherecn(t) is the probability amplitude for an electron to b
at siten, b is the number of channels, andHnm is a tight-
binding Hamiltonian. When translational symmetry
present, the eigenstates of the system are plane waves
the variance of wave packets increases quadratically in t
~ballistic spreading!. On the other hand, since the pioneeri
work of Anderson@1#, it is known that disorder usually tend
to suppress propagation and leads to localization. In the o
dimensional case, even a small amount of disorder lead
localization of all eigenstates@1,2#, and therefore asymptoti
cally the spreading of a wave packet remains bounded
higher dimensions a localization to delocalization transit
can occur that leads to diffusive or subdiffusive spreading
a wave packet@2,3#. In addition, there are quasiperiodic sy
tems that even in 1D show fractal energy spectra and eig
functions leading to a power law spreading@4# that is remi-
niscent of anomalous diffusion in classical systems.

A global characterization of the dynamical evolution of
wave packet is provided by its variance

M ~ t ![(
n

n2ucn~ t !u2}tn. ~2!

Its time dependence gives a quantitative description of
dynamics:n50 corresponds to localization,n51 to diffu-
sion, n52 to ballistic motion, andnP(0,2) to anomalous
diffusion. It was shown that a ballistic upper bound,M (t)
<At2, exists for all times with a system specific constanA
@5#. Although this statement gives no restriction onn for
finite time intervals, to our knowledge in all studies up
now n<2 was found for any time.

In this paper we show that there can be superballi
spreading with exponentsnP(2,3# for parametrically large
time intervals. Examples withn53 can be seen in Fig. 1
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where the variances of wave packets, while staying be
the ballistic upper bound, show a cubic growth. Each sys
consists of a perfect lattice with a disordered region of fin
length. Moreover, extending the length of the disordered
gion increasesthe time interval of the cubic growth.

We will show that this unexpected behavior of the va
ance is associated with the rateG for the emission of an
electron from the disordered region into the perfect latti
This parameter determines the time scales

ton;S 1

G D 1/n

and toff;
1

G
, ~3!

when the superballistic growth starts and ends, respectiv
The differentG dependence ofton and toff ensures that this
time interval becomes arbitrarily large asG decreases. We
would like to mention that such intermediate superballis
regimes are well known in other contexts like in hydrod
namic turbulence~Richardson law! or in plasma physics, bu
are unrelated.

In order to understand the appearance of the cubic gro
of the variance in Fig. 1 we consider a simple probabilis
model: The disordered part is replaced by a point source
anything emitted from it moves with a constant velocityv
modeling the dynamics of a perfect lattice. Initially, all pro

FIG. 1. VarianceM (t) of a wave packet in a 1D disordere
model of sizeL550, 70, 80, and 100~from left to right! with a
perfect lattice attached to both ends. The dashed lines indicate
time range over which the cubic growth appears before
asymptotic ballistic spreading sets in. The inset shows the cu
growth for a band random matrix model (b510, L5100,
T50.001).
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ability is confined to the point source and decays with
constant rateG, such that the probability at the point sour
is given by

P~ t !5exp~2Gt !. ~4!

The varianceMPS(t) of the point-source model is then give
by

MPS~ t !5E
0

`

dxx2E
0

t

dt8„2 Ṗ~ t8!…d„x2v~ t2t8!…, ~5!

where2 Ṗ(t) is the flux emitted from the point source. Su
stituting Eq.~4! for P(t) we get

MPS~ t !5v2GE
0

t

dt8e2Gt8~ t2t8!2, ~6!

which yields after integration

MPS~ t !5v2S t22
2

G
t1

2

G22
2

G2 e2GtD . ~7!

As expected, the variance grows quadratically,MPS(t)
;v2t2, for asymptotically large times. Expanding the exp
nential term in Eq.~7! one finds

MPS~ t !5v2GS 1

3
t32

G

12
t41••• D . ~8!

Under the conditiont,1/G the cubic term dominates a
higher orders. Thus we find a cubic increase of the varia
in the point-source model starting from the timeton50 up to
the time toff'1/G. At the same time scale the crossover
the asymptotic ballistic spreading starts, as can be seen
Eq. ~7!.

An intuitive understanding is based on the fact, that
linear decrease ofP(t)512Gt for small times is respon
sible for the cubic growth of the variance@Eq. ~5!#. During
this time the norm of the wave packet outside the po
source increases linearly. This linear increase of the n
combined with the usual quadratic increase of the varia
due to the ballistic spreading yields the cubic growth of
variance.

A more realistic model should take into account t
lengthL of the disordered region and the timet at which the
norm of the wave packet outside the disordered region s
to increase linearly. The total variance isM (t)5M int(t)
1Mext(t), whereM int(t) is the contribution of the interna
region andMext(t) originates from the perfect lattice, whic
is given by

Mext~ t !5E
L

`

dxx2E
t

t

dt8„2 Ṗ~ t8!…d„x2L2v~ t2t82t!….

~9!

This reduces to Eq.~5! of the point-source model for timest
fulfilling the following three conditions:~i! t@t, ~ii ! vt@L,
and ~iii ! Mext(t)@M int(t). These conditions set the tim
scale ton at which the cubic law may start, in contrast
01230
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ton50 for the point-source model. Conditions~i! and ~ii !
give the time scalest and L/v, respectively. The interna
varianceM int(t) is bounded byM int

max<L2. Thus condition
~iii ! together withMext(t)'v2G/3t3 valid for t,toff leads to
the time scale@M int

max/(v2G)#1/3. The maximum of these thre
time scales defines the onset of the cubic law

ton5maxH t,
L

v
,S M int

max

v2G
D 1/3J . ~10!

In order to see the cubic law over a large time intervaltoff
'1/G has to be large implying a smallG. For sufficiently
smallG the third time scale in Eq.~10! will dominate leading
to the scaling presented in Eq.~3! for n53. The ratiotoff /ton
scales asG22/3 and therefore can be made arbitrarily large
decreasingG.

One can extend the above analysis to other dynam
exponentsn,3 by embedding the internal region in a lattic
showing anomalous diffusion. These lattices are charac
ized by a variance scaling astm, mP(0,2). This yields the
general expressionn5m11 for Eqs.~2! and~3!. Again, the
intuitive understanding is that the linear increase of the no
of the wave packet outside the internal region increases
exponent by 1.

In the remainder of this paper we will give numeric
evidence supporting the above analysis. We use perfec
quasiperiodic lattices with a finite 1D or quasi-1D disorder
region, although there are many other possible settings.
first example consists of a 1D disordered region of sizeL
attached with semi-infinite perfect lattices at both ends.
Eq. ~1! this corresponds to a tridiagonal Hamiltonian (b
51), with Hn,n6151 andHnn50 except for a region of size
L where Hnn is a random number. We fix the disorde
strength and we use sample sizesL550, . . .,100 such that
L. l ` , wherel ` is the localization length of the correspon
ing infinite disordered system. In all cases the initiald-like
wave packet is launched in the middle of the disordered
gion. Figure 1 shows the variance averaged over ten diso
realizations. It should be noted, that without averaging
get the same qualitative behavior. For small times all wa

FIG. 2. ~a! Norm of the wave packet inside the disordered
gion of the 1D model vst for L580, 90, 100 showing linear de
cays.~b! Decay rateG vs L following an exponential law~dashed
line!.
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packets spread ballistically until the variance starts to s
rate whenM int(t)' l `

2 . Then the cubic increase of the var
ance can be observed before finally the asymptotic balli
spreading sets in. There is a ballistic upper bound for
times in agreement with Ref.@5#. The range over which the
cubic law holds increases with the size of the disorde
sample. This is in agreement with the predictions of
point-source model: It is applicable since the norm of
wave packet inside the disordered region initially decays
early @Fig. 2~a!#. From this linear decayP(t)512Gt we
determine the rateG that decreases exponentially with th
sample sizeL @Fig. 2~b!#, as expected for the localized re
gime @6#. Thus extending the disordered region decreaseG
and together with Eq.~3! explains the increase of the supe
ballistic time interval. The time scaleston and toff are deter-
mined from the times whenM (t) deviates from the fitted
cubic increase by more than 10%. The scaling of the ti
scaleston andtoff with G are shown in Fig. 3 confirming Eq
~3!.

We now show that our considerations also apply to a b
random matrix model that describes quantum wires@7#. The
Hamiltonian matrixHnm is real and the entries are differe
from zero in a stripe of widthb around the diagonal (un

FIG. 3. Timeston ~circles! and toff ~squares! vs G for the 1D
model~filled symbols! and for the band random matrix model~open
symbols, data forton and toff are shifted to account for differen
prefactors of the power laws for the two models!.
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2mu<b), only. The parameterb defines the hopping rang
between neighboring sites, or in the quasi-1D interpretat
the number of transverse channels along a thin wire@7#. The
nonzero matrix elements are independent Gaussian ran
numbers with variance 1 within a region of sizeL and are
equal to 1 outside this region. The matrix elementsHnm that
couple the sample to the perfect lattice are random num
with varianceT such thatG;T @8#. In order to study an
example where the internal varianceM int(t) is bounded by
the sample size rather than the localization length, we cho
a sample sizeL< l ` . Thus the initial wave packet spread
diffusively over the disordered region before it leaks out
the leads. We find a cubic increase of the variance~Fig. 1,
inset! and by varying the coupling strengthT we confirm Eq.
~3! for ton and toff ~Fig. 3!.

Finally, we use a Fibonacci chain model@9# outside the
disordered region, which allows to vary the exponentm of its
anomalous diffusion by changing the potential strengthV
@10#. Figure 4 shows the superballistic increase of the ex
nal variance in nice agreement with the expected expon
n5m11.

We thank R. Fleischmann, I. Guarneri, and A. Politi f
helpful discussions.

FIG. 4. External varianceMext(t) for a 1D disordered sample
(L550) attached to Fibonacci chain models withV50.1, 0.4, and
0.7 ~from top to bottom!, showing the expected power laws~dashed
lines!.
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